Senior ML Platform Engineer
42dot
We are looking for the best
At 42dot, our AD ML Platform Engineers build the core data platform and ML training / eval platform for the cutting edge algorithms in autonomous driving. We develop the distributed system of a scalable data platform for large-scale dataset (millions of scenes), as well as high-performance data serving SDKs for ML model training / evaluation. The platforms we deliver could highly improve the efficiency of ML model development lifecycle, including training, evaluation, deployment, as well as monitoring in the cloud environment.
Responsibilities
Set technical strategy and oversee development of high scale, reliable data platform to manage, visualize and serve large-scale datasets for ML model training and validation.
Build up the data lakehouse for autonomous driving scene datasets, including the sensor data, calibration data, as well as annotation data
Drive the Autonomous Driving Data SDK development, including scene data search, datasets preparation, dataset loading, etc.
Dig into performance bottlenecks all along the data processing pipelines, from data processing latency, data search latency to Test Procedure (TP) coverage.
Bootstrap and maintain infrastructure for Data Platform components—Data Processing Pipeline, Database, Data Lakehouse and Data Serving.
Collaborate with cross-functional teams, including ML algorithm, ML application, and Cloud Infra to align ML Platforms with overall Autonomous Driving System Architecture.
Qualifications
Bachelor's degree or higher in Computer Science, Engineering, Robotics, or a similar technical field.
Minimum of 7 years of experience in Data Engineering or ML Platform roles
Expert-level proficiency in Python and solid experience in Python SDK development
Solid working experience in Databases (e.g., MongoDB, PostgreSQL, etc)
Strong understanding of modern AI frameworks (e.g., PyTorch, TensorFlow etc.), especially the principle of distributed data loader for model training
Hands-on experience with data pipeline job orchestration with Databricks Workflows or Apache Airflow, as well as integrating data pipelines with machine learning models
Extensive experience with data technologies and architectures such as Data Warehouse (e.g., Hive) or Lakehouse (e.g., Delta Lake)
Experience with Apache Spark or other big data computing engines
Excellent leadership and communication skills, with a demonstrated ability to lead technical projects
Preferred Qualifications
Experience with autonomous vehicle sensor data (e.g., LiDAR, camera, radar)
Experience with ML model training lifecycle (e.g., data preparation, model training / validation / deployment, etc)
Understanding data governance principles, data privacy regulations, and experience implementing security measures to protect data
Understanding of Large Models, like VLM
Interview Process
서류전형 - 코딩테스트 - 화상면접 (1시간 내외) - 대면 혹은 화상면접 (3시간 내외) - 최종합격
전형절차는 직무별로 다르게 운영될 수 있으며, 일정 및 상황에 따라 변동될 수 있습니다.
전형일정 및 결과는 지원서에 등록하신 이메일로 개별 안내드립니다.
Additional Information
이력서 제출 시 주민등록번호, 가족관계, 혼인 여부, 연봉, 사진, 신체조건, 출신 지역 등 채용절차법상 요구 금지된 정보는 제외 부탁드립니다.
모든 제출 파일은 30MB 이하의 PDF 양식으로 업로드를 부탁드립니다. (이력서 업로드 중 문제가 발생한다면 지원하시고자 하는 포지션의 URL과 함께 이력서를 recruit@42dot.ai으로 전송 부탁드립니다.)
인터뷰 프로세스 종료 후 지원자의 동의하에 평판조회가 진행될 수 있습니다.
국가보훈대상자 및 취업보호 대상자는 관계법령에 따라 우대합니다.
장애인 고용 촉진 및 직업재활법에 따라 장애인 등록증 소지자를 우대합니다.
42dot은 의뢰하지 않은 서치펌의 이력서를 받지 않으며, 요청하지 않은 이력서에 대해 수수료를 지불하지 않습니다.
※ 지원 전 아래 내용을 꼭 확인해 주세요.
42dot이 일하는 방식, 42dot Way 보러가기 →
42dot만의 업무몰입 프로그램, Employee Engagement Program 보러가기 →